Living oysters and their shells as sites of nitrification and denitrification

Jane M. Caffrey, James T. Hollibaugh, Behzad Mortazavi

A R T I C L E I N F O

Article history:
Received 4 June 2016
Accepted 18 August 2016
Available online 24 August 2016

Keywords:
Nutrients
Bivalves
Nitrification
Denitrification
Oysters

A B S T R A C T

Oysters provide a critical habitat, are a food resource for higher trophic levels and support important commercial fisheries throughout the world. Oyster reefs can improve water quality by removing phytoplankton. While sediment denitrification may be enhanced adjacent to oyster reefs, little is known about nitrification and denitrification associated with living oysters and their shells. We measured nitrification and denitrification in living oysters (Crassostrea virginica and Crassostrea gigas) and empty oyster shells. Nitrification was similar between live oysters and empty oyster shells; however, denitrification was enhanced significantly on living oysters compared to shells. This is the first demonstration of nitrification and denitrification associated with living oysters and their shells. Our data suggest that loss of historic oyster reefs has likely affected the resilience of estuaries to eutrophication. The additional benefit of oyster mediated denitrification should be considered in restoration of oyster reefs as a tool for managing eutrophication.

1. Introduction

Nearshore ecosystems containing oyster reefs are among the most valuable and productive marine habitats on earth, from both ecological and economic perspectives. Over the past century, areal coverage of oyster reefs and oyster biomass have declined 64% and 88%, respectively (Zu Ermgassen et al., 2012). Declines in oysters have been attributed to disease, overharvesting, burial by excessive sedimentation, pollution-induced mortality and other human impacts (Luckenbach et al., 2005, Lotze et al., 2006, Jackson, 2008, Beck et al., 2011). The loss and degradation of oyster habitat represents a substantial threat to the sustainability of coastal marine resources. As a foundation species that produce hard substrate, healthy oysters are essential for maintaining reefs and sustaining optimal ecosystem services including food production, stabilizing shorelines, burial of carbon and improving water quality (Grabowski and Peterson, 2007, Grabowski et al., 2012, zu Ermgassen et al., 2013).

Oyster reefs serve as habitat for over 200 species of fish and invertebrates (Karnauskas et al., 2013). Möbius coined the term “biocenosisis” in 1877 to describe the distinct assemblage of invertebrate and fish species that colonized oyster reefs (Möbius, 1877), since then this concept has been expanded to include microbes (Colwell and Liston, 1960, Nocker et al., 2004, La Valley et al., 2009). Distinctive microbial communities are associated with gills, digestive glands, and gonads (Hernández-Zárate and Olmos-Soto, 2006), as well as stomach and guts of oysters (King et al., 2012, Trabal Fernández et al., 2014, Chauhan et al., 2014). Increasingly, these efforts have focused on understanding the relationship between nitrogen transforming microorganisms and macrofauna (Wahl et al., 2012, Steif, 2013, Mouton et al., 2016).

In addition to harboring diverse prokaryotic and eukaryotic communities, oysters and similar bivalve filter feeders sequester organic matter and nutrients, potentially ameliorating the negative effects of phytoplankton blooms caused by anthropogenic nutrient pollution (Newell et al., 2005). However, ammonium excretion can recycle some of the nitrogen to the water column, where it is available to support additional algal growth (Boucher and Boucher-Rodini, 1988, Mazouni, 2004). Two key nitrogen transformations, nitrification and denitrification, have also been examined in bivalve communities. Nitrification is the sequential oxidation of ammonium to nitrite and then nitrate to nitrate. In estuarine and marine environments, nitrification often limits denitrification, a process during which nitrate is reduced to dinitrogen gas (Jenkins and Kemp, 1984, Seitzinger, 1988). Denitrification is a particularly important process because it removes fixed nitrogen from the ecosystem. Nitrate release from oysters and scallops cultured on ropes is evidence of nitrification associated with bivalves (Mazouni, 2004, Richard et al., 2007). In addition, significant rates of nitrification and denitrification in a variety of bivalve communities have been measured (Welsh and Castadelli, 2004, Svenningsen et al., 2012, Heisterkamp et al., 2013, Kellogg et al., 2013, Smyth et al., 2013,...
Welsh et al., 2015). While there have been many studies focused on examining whether sediments with bivalve biodeposits stimulate denitrification (Newell et al., 2005), results are mixed. Some studies find enhancement adjacent to reefs (Pliether and Smyth, 2011, Smyth et al., 2013, Kellog et al., 2014), while others do not (Nizzoli et al., 2006, Higgins et al., 2013, Mortazavi et al., 2015). Thus, oysters themselves may have the greatest impact on nitrification and denitrification, rather than sediments adjacent to oyster reefs.

Oysters generate a continuous supply of ammonium through excretion. Therefore, we hypothesized that nitrogen transformations associated with living oysters would be greater than on oyster shells only. To test this hypothesis, we compared the rates of nitrification, denitrification, ammonium excretion and respiration by living oysters and their associated microbial communities with biofilms on shells of recently dead oysters (referred to as shell). We examined nitrification rates and ammonium fluxes in two different species Crassostrea virginica and Crassostrea gigas and their shells to see if there were species level differences. Denitrification and respiration were only measured on C. virginica.

2. Methods

2.1. Experimental design

We collected live oysters, oyster shells and water from Santa Rosa Sound in Pensacola Bay, Florida in October 2011, June 2012, June 2013 and July 2013 and from Tomales Bay, California in September 2011. Subtidal oysters, C. virginica, were collected from a pier in Santa Rosa Sound, Florida and are referred to as Pensacola Bay. Hog Island Oyster Company donated aquaculture grown oysters, C. gigas, from Tomales Bay. Oysters were transported to the lab in water from their field site and experiments began within 4 h of collection for batch experiments and within 24 h of collection for flow-through experiments. We selected the number of oysters and shells so that each replicate contained approximately the same cross sectional area, thus the numbers ranged from 1 to 6 individuals per replicate (Table 1). All incubations were conducted in the dark to minimize the effect of attached algae on nitrogen transformations.

Whole, unfiltered water from the collection site was used to incubate oysters or shell for all experiments. Two different types of experiments were conducted. Batch experiments measuring nitrification and nutrient fluxes were conducted on all dates except July 2013. For the batch experiments, oysters, shells or water only controls were incubated at 23 °C in 1 L of water amended with NH₄Cl to a final concentration of 10 μM with aeration using aquarium pumps. Water samples were collected from ambient water and from experiments at 0 and 24 h and analyzed for NO₂⁻ and NO₃⁻. All treatments were replicated in triplicate, except for Tomales Bay, which had 4 replicates per treatment. We conducted flow-through experiments to measure nitrification, denitrification, nutrient and oxygen fluxes in 2013. Oysters or shell were incubated in gas-tight plexiglass core tubes held in an environmental chamber at in situ temperature. Core tube diameter was 9.5 cm and length was 24.5 cm. In June 2013 following batch experiments, live oysters and shell were transferred to tubes and incubated in a flow-through system. A tube with ambient water only was the control. Water was amended with 15NO₃⁻ (98 at.%) to a final concentration of 20 μM. Flow rate was 0.18 L h⁻¹. In July 2013, we incubated live oysters at two nitrate concentrations, either 10 or 40 μM 15NO₃⁻ (98 at.%) in triplicate at a similar flow rate as the June experiments to examine the effect of different NO₃⁻ concentrations on denitrification rates. A water-only control at each NO₃⁻ concentration was incubated alongside the oyster treatments. Triplicate samples of inflow and outflow water from each plexiglass tube were collected after a 24 h stabilization period. We used photographs of oysters and shells to determine cross sectional area and shell height. Shell height was measured as the length of the oyster from umbo to the margin of the valve.

2.2. Analytical methods

Ammonium concentration was measured fluorometrically using an o-phthalaldehyde and borate buffer reagent (Holmes et al., 1999). Nitrate + nitrite concentrations were measured using cadmium reduction to nitrite with subsequent addition of sulfanilamide and N-1 naphthylethenediamine dihydrochloride (Jones, 1984). Water samples were collected in glass vials with no headspace for analyses of dissolved oxygen, 29N₂ and 30N₂. N₂ concentrations and isotopic ratios in the overlying water were determined with a quadrupole mass spectrometer equipped with a flow-through silicone capillary membrane (Kana et al., 1994), a furnace to remove oxygen (Eyre et al., 2002) and a Channeltron/Faraday secondary electron multiplexer. Dissolved oxygen concentrations were measured with Unisense oxygen microelectrodes calibrated according to the manufacturer. The isotopic composition of 15NO₃⁻ + 14NO₂⁻ was determined after conversion to N₂O (Sigman et al., 2001) at the UC Davis Stable Isotope Facility. Before analysis, 15NO₂⁻ + 15NO₃⁻ samples were diluted with 14NO₃⁻ so that enrichment was <10 at.%.

2.3. Calculations and statistics

Nitrogen transformation rates were calculated per unit of shell cross sectional area. Nitrification rates in the batch experiments were calculated as the production of NO₃⁻ + NO₂⁻ during the 24 h incubation period. Because NH₄⁺ concentrations were amended to 10 μM, batch experiments are closer to potential nitrification than in-situ rates. For all flow-through experiments, oxygen, nutrient and N₂ fluxes were measured as the difference between effluent and influent concentrations multiplied by the flow rate. To determine the contribution of oysters or shell, water only fluxes were subtracted from oyster or shell fluxes. Water only fluxes were <5% of the oyster fluxes for denitrification. These values were divided by the shell cross sectional area (e.g. Eq. 1)
to determine the rate per shell area. Nitrification rate (R) was calculated as the isotopic dilution of 15NO$_3^-$ as in Rysgaard et al. (1993)

$$ R = \frac{[C_{NOx}(e-i)]}{[0.366-e]} \frac{FR}{shell_area} $$ (1)

where C_{NOx} is the NO$_3^-$ + NO$_2^-$ (NO$_x^-$) concentration in inflowing water, e is the 15NO$_x$ fraction in effluent, i is the 15NO$_x$ fraction in influent, 0.366 is the background 15N content, FR is the flow rate, and shell area is the cross sectional area of oysters (or shell) in each core tube.

Denitrification rates were calculated according to the isotope pairing technique (Neilsen, 1992)

$$ D_{15} = (14N^{15}N) + 2(15N^{15}N) $$ (2)

$$ D_{14} = \left[\frac{14N^{15}N}{2(15N^{15}N)} \right] D_{15} $$ (3)

where D_{15} is the denitrification based on 15NO$_3^-$, 14N15N is the flux of 29N$_2$, 15N15N is the flux of 30N$_2$, and D_{14} is the denitrification based on 14NO$_3^-$. Total denitrification is $D_{15} + D_{14}$.

We used t-tests and ANOVA to test for differences in nitrification rates between oyster and shell treatments with R (Table 2) using rank order nitrification data with R (R core Team, 2015). t-Tests were used for Tomales Bay batch and the June flow-through experiments. We used an ANOVA for Pensacola Bay batch experiments (October 2011, June 2012, June 2013) since these experiments were conducted on the same species and using the same technique to look for significance between treatments, date and their interaction. Significant factors were tested using a Tukey HSD. Linear regression analyses of denitrification rates between oyster and shell treatments with R (Table 2) using rank test (Rysgaard et al., 1993).

3. Results

Overall, nitrification rates were similar among our experimental treatments (living oysters versus shell only) and among different species (Crassostrea virginica and Crassostrea gigas), ranging from near zero to 112 nmol cm$^{-2}$ shell area d$^{-1}$ (Fig. 1). Nitrification rates did not significantly differ between living oysters and oyster shell (p > 0.07) (Fig. 1, Table 2). However, date was significant with rates in October 2011 being significantly lower than in 2013 (Tukey HSD, p = 0.02). Rates were also similar among batch experiments where nitrification was measured via the accumulation of NO$_3^-$ + NO$_2^-$ and flow-through experiments where nitrification was measured as the isotopic dilution of 15NO$_3^-$ (Fig. 1).

In contrast to essentially equivalent nitrification rates, denitrification rates associated with living oysters were over three times greater than those of empty oyster shells, 269 ± 37 nmol cm$^{-2}$ shell area d$^{-1}$ and 74 ± 17 nmol cm$^{-2}$ shell area d$^{-1}$, respectively (Fig. 2, Table 3). Additionally, denitrification rates were consistently greater than nitrification rates. On average, denitrification was 3.6 times greater than nitrification with living oysters, and 3.3 times greater than with empty oyster shells.

The fluxes of nitrite and ammonium were an order of magnitude higher on oysters than in shell in both flow-through (Table 3) and batch experiments (Table 4). Ammonium fluxes were similar between C. gigas (1121 ± 100 nmol cm$^{-2}$ shell area d$^{-1}$) and C. virginica measured in batch (1415 ± 230 nmol cm$^{-2}$ shell area d$^{-1}$) or flow-through (1232 ± 385 nmol cm$^{-2}$ shell area d$^{-1}$) experiments. Oxygen consumption in oyster treatments was about double that of shell treatment (Table 3).

Table 2

<table>
<thead>
<tr>
<th>Species</th>
<th>Type of experiment</th>
<th>Test</th>
<th>Contrast</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. gigas</td>
<td>Batch</td>
<td>t-test</td>
<td>Treatment</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ANOVA</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Date</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Treatment × Date</td>
<td>0.07</td>
</tr>
<tr>
<td>C. virginica</td>
<td>Flow through</td>
<td>t-test</td>
<td>Treatment</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Fig. 1. Nitrification rate of living oysters or oyster shell from Tomales Bay (C.g. = Crassostrea gigas) or Pensacola Bay (C.v. = Crassostrea virginica). Rates (nmol N cm$^{-2}$ shell area d$^{-1}$) based on accumulation of NO$_3^-$ + NO$_2^-$ in batch experiments (B) or isotopic dilution of 15N-NO$_3^-$ (FT) in flow-through experiments. Mean ± S.E., n = 4 (Tomales Bay), n = 3 (Pensacola Bay). n.d. no data.

Fig. 2. Denitrification rates (DNF) (top panel) and nitrate flux (middle panel) in live Crassostrea virginica and oyster shell (nmol N cm$^{-2}$ shell area d$^{-1}$) at varying NO$_3^-$ concentrations (µM). Denitrification versus nitrate flux (bottom panel).
4. Discussion

Our nitrification results are consistent with studies of other benthic bivalves that measured significant nitrification in their tissues or on their shells (Welsh and Castadelli, 2004, Svenningsen et al., 2012, Heisterkamp et al., 2013, Welsh et al., 2015). While it is difficult to make a direct comparison among these studies, Welsh and Castadelli (2004) found that potential nitrification on interior and exterior surfaces combined were 37.2 and 42.3 nmol cm$^{-2}$ (surface area) d$^{-1}$ for Tapes philippinarum and Mytilus galloprovincialis, respectively. Despite the fact that they normalized to surface area while we normalized to cross sectional area, their values are within the range of our values of 75 and 45 nmol cm$^{-2}$ (shell area) d$^{-1}$ for M. galloprovincialis with $15 \text{ nmol cm}(\text{shell area})^{-1}$.

Denitrification rates (nmol cm$^{-2}$ (shell area) d$^{-1}$) were a source of N$_2$, suggesting that net denitrification occurred when bivalve were present, while nitrogen fixation occurred in the bare sediments (Smyth et al., 2013). Denitrification from Manila clams (Ruditapes philippinarum) alone was 70% of incubations with sediments plus clams (Welsh et al., 2015). In contrast, denitrification rates were similar between sediments with Macoma baltica and those without while rates of dissimilatory nitrate reduction to ammonium were higher in sediments with M. baltica (Bonaglia et al., 2014). The most comprehensive study examining denitrification was conducted at an oyster restoration site using an ex-situ approach (Kellogg et al., 2013). At the site, which included a mixture of oysters, other invertebrate species and sediments, denitrification rates were 12 times greater than in bare sediments (Kellogg et al., 2013). If we calculate our rates per individual oyster and then scale to an average oyster abundance of 130 oysters m$^{-2}$ (Kellogg et al., 2013), denitrification would be 40.6 mmol m$^{-2}$ h$^{-1}$, 1 oxygen consumption would be 2320 mmol m$^{-2}$ h$^{-1}$, while ammonium flux would be 444 mmol m$^{-2}$ h$^{-1}$. These rates are similar to those measured on oyster reefs (Dame et al., 1989, Dame et al., 1992) or in experimental manipulations that included oysters (Kellogg et al., 2013, Smyth et al., 2013).

Our results support the theory that oyster reefs are hot spots for denitrification within estuaries. Enhanced nitrification and denitrification on healthy oyster reefs may provide a key pathway to the ultimate removal of fixed nitrogen from estuarine environments. Thus, restoration of oyster reefs has the potential to provide ecosystem services beyond those inherent in the physical structure they provide or the food web they support or impact (zu Ermgassen et al., 2013, Kellogg et al., 2014). This benefit might not be limited to oysters, but could include other epibenthic (because oxygen is required for nitrification) filter feeders, for example mussels or other epibenthic bivalves. Although our understanding of the impacts to ecosystem services provided by oyster reefs and our ability to predict their responses to stressors and natural or anthropogenic disruptions is incomplete, this study reveals the key role that nitrifiers and denitrifiers directly associated with living oysters can play in the removal of fixed nitrogen from estuaries. Understanding the environmental conditions that favor nitrogen removal and accounting for all ecosystem components contributing to nitrogen removal from coastal ecosystems is critical for modeling these processes and for improving future nutrient management strategies.

Acknowledgments

We thank Alice Kleinhuizen and Rebecca Bernhard for their assistance in sampling and analysis and Michael Murrell, Stefano Bonaglia, Johanna Stadmark, and anonymous reviewers for reviewing an earlier version of this manuscript. Live and dead oyster images used in graphical abstract from Tracey Saxby, Integration and Application Network, University of Maryland Center for Environmental Science (ian.umces.edu/imagelibrary/). This research did not receive any
specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

Möbius, K., 1877. An oyster bank is a biocoenose, or a social community Translated by HJ. Report of the Gulf of Mexico. NOAA Technical Memorandum NMFS-SEFSC. 653, 52.

