Search results

(1 - 20 of 39)

Pages

Label
Talin
Campell, Z. K., Kwon, I., Finley, S. J., Lee, Y., & Javan, G. T. (2016). Talin: A potential protein biomarker in postmortem investigations. Journal of Forensic and Legal Medicine, 44, 188-191. doi:10.1016/j.jflm.2016.10.020
Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection
Lee, Y., Kwon, I., Jang, Y., Song, W., Cosio-Lima, L. M., & Roltsch, M. H. (2017). Potential signaling pathways of acute endurance exercise-induced cardiac autophagy and mitophagy and its possible role in cardioprotection. The Journal of Physiological Sciences : JPS, 67(6), 639-654. doi:10.1007/s12576-017-0555-7
Exercise protects cardiac mitochondria against ischemia–reperfusion injury
Lee, Y., Min, K., Talbert, E. E., Kavazis, A. N., Smuder, A. J., Willis, W. T., & Powers, S. K. (2012). Exercise protects cardiac mitochondria against ischemia–reperfusion injury. Medicine and Science in Sports and Exercise, 44(3), 397-405. doi:10.1249/MSS.0b013e318231c037
Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes
Lee, Y., Lee, H.-Y., Hanna, R. A., & Gustafsson, A. B. (2011). Mitochondrial autophagy by Bnip3 involves Drp1-mediated mitochondrial fission and recruitment of Parkin in cardiac myocytes. American Journal of Physiology. Heart and Circulatory Physiology (Print), 301(5), H1924-H1931. doi:10.1152/ajpheart.00368.2011
Cardiac kinetophagy coincides with activation of anabolic signaling
Lee, Y., Kang, E.-B., Kwon, I., Cosio-Lima, L., Cavnar, P., & Javan, G. T. (2016). Cardiac kinetophagy coincides with activation of anabolic signaling. Medicine and Science in Sports and Exercise, 48(2), 219-226. doi:10.1249/MSS.0000000000000774
Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes
Lee, Y., Kubli, D. A., Hanna, R. A., Cortez, M. Q., Lee, H.-Y., Miyamoto, S., & Gustafsson, A. B. (2015). Cellular redox status determines sensitivity to BNIP3-mediated cell death in cardiac myocytes. American Journal of Physiology. Cell Physiology, 308, C983-C992. doi:10.1152/ajpcell.00273.2014
Endurance exercise attenuates doxorubicin-induced cardiotoxicity
Lee, Y., Kwon, I., Jang, Y., Cosio-Lima, L., & Barrington, P. (2020). Endurance exercise attenuates doxorubicin-induced cardiotoxicity. Journal of Science in Sport and Exercise, 52(14), 25-36. doi:10.1249/MSS.0000000000002094
Association of exercise-induced autophagy upregulation and apoptosis suppression with neuroprotection against pharmacologically induced Parkinson's disease
Jang, Y., Hwang, D. J., Koo, J. H., Um, H. S., Lee, N. H., Yeom, D. C., Lee, Y., & Cho, J. Y. (2018). Association of exercise-induced autophagy upregulation and apoptosis suppression with neuroprotection against pharmacologically induced Parkinson’s disease. Journal of Exercise Nutrition & Biochemistry, 22(1), 1-8. doi:10.20463/jenb.2018.0001
Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD
Jang, Y., Kwon, I., Song, W., Cosio-Lima, L. M., Taylor, S., & Lee, Y. (2018). Modulation of mitochondrial phenotypes by endurance exercise contributes to neuroprotection against a MPTP-induced animal model of PD. Life Sciences, 209, 455-465. doi:10.1016/j.lfs.2018.08.045
Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson's disease mice
Jang, Y., Koo, J.-H., Kwon, I., Kang, E.-B., Um, H.-S., Soya, H., Lee, Y., & Cho, J.-Y. (2017). Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced Parkinson’s disease mice. Brain Research, 1655, 186-193. doi:10.1016/j.brainres.2016.10.029
Endurance exercise mediates neuroprotection against MPTP-mediated Parkinson's disease via enhanced neurogenesis, antioxidant capacity, and autophagy
Jang, Y., Kwon, I., Song, W., Cosio-Lima, L. M., & Lee, Y. (2018). Endurance exercise mediates neuroprotection against MPTP-mediated Parkinson’s disease via enhanced neurogenesis, antioxidant capacity, and autophagy. Neuroscience, 379, 292-301. doi:10.1016/j.neuroscience.2018.03.015
Endurance exercise prevents metabolic distress-induced senescence in the hippocampus
Jang, Y., Kwon, I., Cosio-Lima, L., Wirth, C., & Vinci, D. M. (2019). Endurance exercise prevents metabolic distress-induced senescence in the hippocampus. Medicine and Science in Sports and Exercise, 51(10), 2012-2024. doi:10.1249/MSS.0000000000002011
Neutralization of tumor necrosis factor-alpha reverses insulin resistance in skeletal muscle but not adipose tissue
Borst, S. E., Lee, Y., Conover, C. F., Shek, E. W., & Bagby, G. J. (2004). Neutralization of tumor necrosis factor-alpha reverses insulin resistance in skeletal muscle but not adipose tissue. American Journal of Physiology: Endocrinology and Metabolism, 287(5), e934-e938. doi:10.1152/ajpendo.00054.2004
Effect of combined anti-inflammatory and nutritional supplements on recovery from resistance exercise
Baggett, S., Cosío-Lima, L., Knapil, J. J., Bishop, P. A., & Lee, Y. (2017). Effect of combined anti-inflammatory and nutritional supplements on recovery from resistance exercise. Journal of Sports Science, 5, 242-249. doi:0.17265/2332-7839/2017.05.002
Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure
Thomas, R. L., Roberts, D. J., Kubli, D. A., Lee, Y., Quinsay, M. N., Owens, J. B., Fischer, K. M., Sussman, M. A., Miyamoto, S., & Gustafsson, Åsa B. (2013). Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes & Development, 27(12), 1365-1377. doi:10.1101/gad.215871.113
Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells
Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B., & Gottlieb, R. A. (2010). Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 6(4), 462-472. doi:10.4161/auto.6.4.11553
Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore
Quinsay, M. N., Thomas, R. L., Lee, Y., & Gustafsson, A. B. (2010). Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy, 6(7), 855-862. doi:10.4161/auto.6.7.13005.
Effects of a periodized training program and a traditional military training program on functional movement and Y-balance tests in ROTC cadets
Cosio-Lima, L. M., Crawley, A., Adlof, L. E., Straughn, M., Wallop, J. D., & Lee, Y. (2017). Effects of a periodized training program and a traditional military training program on functional movement and Y-balance tests in ROTC cadets. Sports and Exercise Medicine Open Journal, 3(2), 46-52. doi:10.17140/SEMOJ-3-147
Athletes ECG stress characteristics in Division II college athletes
Cosio-Lima, L., Adlof, L., Simpson, J., Crawley, A., & Lee, Y. (2020). Athletes ECG stress characteristics in Division II college athletes: A preliminary analysis. Journal of Science in Sport and Exercise, 2, 183-187. doi:10.1007/s42978-020-00057-2
Regulation of autophagy by metabolic and stress signaling pathways in the heart
Youngil, L., Lee, H.-Y., & Gustafsson, A. B. (2012). Regulation of autophagy by metabolic and stress signaling pathways in the heart. Journal of Cardiovascular Pharmacology, 60(2), 118-124. doi:10.1097/FJC.0b013e318256cdd0

Pages