Search results

(1 - 9 of 9)
Label
Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction
Kubli, D. A., Zhang, X., Lee, Y., Hanna, R. A., Quinsay, M. A., Nguyen, C. K., Jimenez, R., Petrosyan, S., Murphy, A. N., & Gustafsson, Åsa B. (2013). Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. Journal of Biological Chemistry, 288(2), 915-926. doi:10.1074/jbc.M112.411363
Long-term resistance exercise-induced muscular hypertrophy is associated with autophagy modulation in rats
Kwon, I., Jang, Y., Cho, J.-Y., Jang, Y. C., & Lee, Y. (2018). Long-term resistance exercise-induced muscular hypertrophy is associated with autophagy modulation in rats. The Journal of Physiological Sciences : JPS, 68(3), 269-280. doi:10.1007/s12576-017-0531-2
Fast twitch skeletal muscle remodeling by prolonged endurance exercise is associated with crosstalk between anabolic and catabolic signaling pathways in mice
Kwon, I., Jang, Y., Song, W., Cosio-Lima, L. M., & Lee, Y. (2018). Fast twitch skeletal muscle remodeling by prolonged endurance exercise is associated with crosstalk between anabolic and catabolic signaling pathways in mice. Biochemistry & Physiology, 7(1). doi:10.4172/2168-9652.1000228
Elevation of hepatic autophagy and antioxidative capacity by endurance exercise is associated with suppression of apoptosis in mice
Kwon, I., Song, W., Jang, Y., Choi, M. D., Vinci, D. M., & Lee, Y. (2020). Elevation of hepatic autophagy and antioxidative capacity by endurance exercise is associated with suppression of apoptosis in mice. Annals of Hepatology, 19(1), 69-78. doi:10.1016/j.aohep.2019.08.010
Endurance exercise-induced autophagy/mitophagy coincides with a reinforced anabolic state and increased mitochondrial turnover in the cortex of young male mouse brain
Kwon, I., Jang, Y., & Lee, Y. (2021). Endurance exercise-induced autophagy/mitophagy coincides with a reinforced anabolic state and increased mitochondrial turnover in the cortex of young male mouse brain. Journal of Molecular Neuroscience, 71(1), 42-54. doi:10.1007/s12031-020-01624-6
Regulation of autophagy by metabolic and stress signaling pathways in the heart
Youngil, L., Lee, H.-Y., & Gustafsson, A. B. (2012). Regulation of autophagy by metabolic and stress signaling pathways in the heart. Journal of Cardiovascular Pharmacology, 60(2), 118-124. doi:10.1097/FJC.0b013e318256cdd0
Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore
Quinsay, M. N., Thomas, R. L., Lee, Y., & Gustafsson, A. B. (2010). Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy, 6(7), 855-862. doi:10.4161/auto.6.7.13005.
Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells
Carreira, R. S., Lee, Y., Ghochani, M., Gustafsson, A. B., & Gottlieb, R. A. (2010). Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Autophagy, 6(4), 462-472. doi:10.4161/auto.6.4.11553
Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure
Thomas, R. L., Roberts, D. J., Kubli, D. A., Lee, Y., Quinsay, M. N., Owens, J. B., Fischer, K. M., Sussman, M. A., Miyamoto, S., & Gustafsson, Åsa B. (2013). Loss of MCL-1 leads to impaired autophagy and rapid development of heart failure. Genes & Development, 27(12), 1365-1377. doi:10.1101/gad.215871.113